EGFR-targeted plasmonic magnetic nanoparticles suppress lung tumor growth by abrogating G2/M cell-cycle arrest and inducing DNA damage
نویسندگان
چکیده
BACKGROUND We have previously demonstrated the epidermal growth factor receptor (EGFR)-targeted hybrid plasmonic magnetic nanoparticles (225-NP) produce a therapeutic effect in human lung cancer cell lines in vitro. In the present study, we investigated the molecular mechanism of 225-NP-mediated antitumor activity both in vitro and in vivo using the EGFR-mutant HCC827 cell line. METHODS The growth inhibitory effect of 225-NP on lung tumor cells was determined by cell viability and cell-cycle analysis. Protein expression related to autophagy, apoptosis, and DNA-damage were determined by Western blotting and immunofluorescence. An in vivo efficacy study was conducted using a human lung tumor xenograft mouse model. RESULTS The 225-NP treatment markedly reduced tumor cell viability at 72 hours compared with the cell viability in control treatment groups. Cell-cycle analysis showed the percentage of cells in the G2/M phase was reduced when treated with 225-NP, with a concomitant increase in the number of cells in Sub-G1 phase, indicative of cell death. Western blotting showed LC3B and PARP cleavage, indicating 225-NP-treatment activated both autophagy- and apoptosis-mediated cell death. The 225-NP strongly induced γH2AX and phosphorylated histone H3, markers indicative of DNA damage and mitosis, respectively. Additionally, significant γH2AX foci formation was observed in 225-NP-treated cells compared with control treatment groups, suggesting 225-NP induced cell death by triggering DNA damage. The 225-NP-mediated DNA damage involved abrogation of the G2/M checkpoint by inhibiting BRCA1, Chk1, and phospho-Cdc2/CDK1 protein expression. In vivo therapy studies showed 225-NP treatment reduced EGFR phosphorylation, increased γH2AX foci, and induced tumor cell apoptosis, resulting in suppression of tumor growth. CONCLUSION The 225-NP treatment induces DNA damage and abrogates G2/M phase of the cell cycle, leading to cellular apoptosis and suppression of lung tumor growth both in vitro and in vivo. Our findings provide a rationale for combining 225-NP with other DNA-damaging agents for achieving enhanced anticancer activity.
منابع مشابه
Loratadine dysregulates cell cycle progression and enhances the effect of radiation in human tumor cell lines
BACKGROUND The histamine receptor-1 (H1)-antagonist, loratadine has been shown to inhibit growth of human colon cancer xenografts in part due to cell cycle arrest in G2/M. Since this is a radiation sensitive phase of the cell cycle, we sought to determine if loratadine modifies radiosensitivity in several human tumor cell lines with emphasis on human colon carcinoma (HT29). METHODS Cells were...
متن کاملEGFR-Targeted Hybrid Plasmonic Magnetic Nanoparticles Synergistically Induce Autophagy and Apoptosis in Non-Small Cell Lung Cancer Cells
BACKGROUND The epidermal growth factor receptor (EGFR) is overexpressed in 80% of non-small cell lung cancer (NSCLC) and is associated with poor survival. In recent years, EGFR-targeted inhibitors have been tested in the clinic for NSCLC. Despite the emergence of novel therapeutics and their application in cancer therapy, the overall survival rate of lung cancer patients remains 15%. To develop...
متن کاملAn indolocarbazole inhibitor of human checkpoint kinase (Chk1) abrogates cell cycle arrest caused by DNA damage.
Many cancer therapies cause DNA damage to effectively kill proliferating tumor cells; however, a major limitation of current therapies is the emergence of resistant tumors following initial treatment. Cell cycle checkpoints are involved in the response to DNA damage and specifically prevent cell cycle progression to allow DNA repair. Tumor cells can take advantage of the G2 checkpoint to arrest...
متن کاملHinokitiol Induces DNA Damage and Autophagy followed by Cell Cycle Arrest and Senescence in Gefitinib-Resistant Lung Adenocarcinoma Cells
Despite good initial responses, drug resistance and disease recurrence remain major issues for lung adenocarcinoma patients with epidermal growth factor receptor (EGFR) mutations taking EGFR-tyrosine kinase inhibitors (TKI). To discover new strategies to overcome this issue, we investigated 40 essential oils from plants indigenous to Taiwan as alternative treatments for a wide range of illnesse...
متن کاملThe protein kinase C inhibitor Gö6976 is a potent inhibitor of DNA damage-induced S and G2 cell cycle checkpoints.
In response to DNA damage, cells arrest progression through the cell cycle at either G(1), S, or G(2). We have reported that UCN-01 (7-hydroxystaurosporine) abrogates DNA damage-induced S and G(2) arrest and enhances cytotoxicity selectively in p53 mutant cells, thus providing a potential, tumor-targeted therapy. Unfortunately, UCN-01 binds avidly to human plasma proteins, limiting bioavailabil...
متن کامل